
Beyond Conventional Triggers: Auto-Contextualized
Covert Triggers for Android Logic Bombs

Ye Wang, Bo Luo, and Fengjun Li
Department of Electrical Engineering and Computer Science, Institute for Information Sciences

The University of Kansas, Lawrence, KS, USA
{yeah_wong, bluo, fli}@ku.edu

Abstract—Recent advances in static analysis, fuzzing, and
learning-based detection have substantially improved the defense
against trigger-based malware; however, these approaches mostly
assume that trigger conditions are semantically explicit or distin-
guishable from normal application logic. In this paper, we present
SensorBomb, a novel logic-bomb framework that exploits this
assumption through auto-contextualized triggers and onboard
sensor-actuator covert channels. Instead of relying on obscure or
rare trigger conditions, SensorBomb constructs triggers tightly
aligned with the host app’s legitimate sensor usage, actuator be-
haviors, and functional context so that they appear indistinguish-
able from benign behavior. To do so, SensorBomb automatically
analyzes the host app to select context-compatible sensors, actua-
tors, and sensitive operations, constructs covert trigger channels,
and dynamically adapts trigger patterns to evade static analysis,
fuzzing, sensor state anomaly detection, and user suspicion. We
implement three representative prototypes of such triggers and
evaluate them across diverse devices and environments. Our
results show that SensorBomb consistently evades state-of-the-
art detection techniques and achieves high trigger reliability
with zero false positives. Large-scale injection experiments on
real-world APKs further demonstrate that SensorBomb can be
deployed without affecting normal app functionality. This work
reveals a critical and previously underexplored attack surface in
mobile malware defenses and calls for more advanced detection
mechanisms.

I. INTRODUCTION

Being a straightforward yet effective method for hiding
themselves from detection, logic bombs execute hidden func-
tions only when specific conditions are met, while remaining
dormant otherwise. They have played significant roles in real-
world security incidents against critical infrastructure such
as banks and payroll systems [1], industrial control systems
[2], [3], media outlets [4], and national security. As the
most popular mobile platform, Android has also been heavily
targeted by logic bombs, which are also known as passive
backdoors [5], evasion malware [6], trigger-based malware [7],
hidden sensitive operations (HSO) [8], [9], or hidden behaviors
[10]. They commonly leverage triggers based on temporal
conditions, specific events, system states, user interactions, or
combinations thereof [11], [10], as summarized in Table I.

Moreover, the unique hardware and software stack of mobile
devices allows attackers to detect simulated or emulated test
environments [12] and better conceal logic bombs from detec-
tion systems [6].

To counter such threats, researchers have developed various
static and dynamic detection mechanisms. Dynamic analysis
has advanced from simple trigger activation using fixed inputs
[13] to sophisticated fuzzing techniques aimed at expanding
behavioral coverage [14], [15]. Meanwhile, static analysis has
matured significantly, with modern tools leveraging machine
learning to detect both known and novel logic bombs, even
those triggered by obscure or previously unseen conditions
[7], [8], [10], [9], [16]. They offer a complementary and
increasingly effective defense against mobile logic bombs. As
shown in Table I, most of the commonly used triggers can
be effectively detected by both static and dynamic detection
approaches. Consequently, the real-world impact of Android
logic bombs has been significantly reduced, and academic
attention to the topic has declined.

Despite these advances, we observe a critical blind spot
in existing detection frameworks, particularly those based on
static analysis, which often overlook sensor-based triggers. For
example, detectors like TriggerScope [7] and HSOMiner [8]
do not incorporate sensor input into their analysis pipelines.
Difuzer [9] in theory can detect arbitrary trigger types, but its
implementation does not account for sensor data. Similarly, the
widely used open-source TriggerZoo dataset [17], which cata-
logs thousands of logic bombs and benign trigger-based behav-
iors for detector training, lacks instances involving sensor data.
As a result, sensor-based logic bombs such as Cerberus [18],
Currency Converter, and BatterySaverMobi [19] have success-
fully bypassed state-of-the-art (SOTA) detectors and caused
damage before public disclosure. Later, sensor-based covert
channels have been explored that could activate malware via
out-of-band signals [20]. Unlike conventional sensor-activated
triggers, these covert channels exploit complex patterns that
are difficult to reproduce through dynamic fuzzing, showing a
promising potential to evade current detection techniques.

However, despite their potential, no existing work system-
atically investigates how such sensor-based triggers can be
leveraged to construct practical logic bombs or assesses their
effectiveness in evading current detection systems. As existing
Android fuzzing frameworks can be extended to fuzz sensor
APIs, we experimentally tested a sensor-based trigger using

Network and Distributed System Security (NDSS) Symposium 2026
23 - 27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240348
www.ndss-symposium.org

TABLE I: Trigger types and detection mechanisms for known
Android logic bombs.

Trigger Type Description Static Dynamic Anomaly
Fuzzing Others Detection

Time-based [7], [8], [9], [23],
[24]

At a specific time or date, or after a
certain interval × × - -

Event-based [8], [9], [25],
[11]

System events (e.g., BOOT_COMPLETED,
screen unlock) × × - -

Context-aware [8], [9], [25],
[11], [12]

Contextual data from the device’s
environment (GPS, battery level) × - × -

System property [8], [9], [25],
[11] System properties or configurations × × - -

Communication/Signal [8],
[9], [10] External triggers (SMS, HTTP, user input) × ✓ × -

Sensor status or value [11],
[26], [27]

physical characteristics for the execution
environment, and specific values to trigger × × -

Covert channels [21], [22] Sensor-based covert channels to transmit
trigger commands from external emitters ✓ - ×

SensorBomb (ours) Onboard sensor-based covert channels with
auto-contextualized embedding ✓ ✓ ✓ ✓

Note: ✓ and × denote can and cannot evade the detection mechanism, respectively.
means not being fully evaluated, and - denotes not applicable.

step count [18] (§VII-D) and found that sensor-value-based
triggers face fundamental limitations: because sensor read-
ings operate within narrow and predictable physical ranges,
fuzzing such values is computationally expensive yet feasible
(§VIII-C). To maintain stealth, attackers often sacrifice success
rate by employing wide-net strategies such as using rare but
naturally occurring conditions, e.g., specific GPS locations
[7] or unusually high step counts [18]. These attacks are
usually one-shot: once discovered, they can be easily defeated
through targeted fuzzing. On the other hand, sensor-based
covert channels offer a more intricate triggering mechanism
using timing-sensitive or modulated sensor inputs, while main-
taining a high attack success rate. However, these channels
require interference isolation for reliable transmission, making
them susceptible to anomaly detection through sensor behavior
monitoring [21], [22]. Their practicality is limited since they
often depend on customized hardware and close physical
proximity to the target device [20]. Moreover, attackers lack
visibility to the device’s real-time status, which undermines the
reliability of trigger delivery in practice (§VII-B). Therefore,
we argue that, while sensor-based triggers and covert channels
show potential, they cannot be naively adopted to construct
practical logic bombs that evade all existing defenses.

In this work, we present SensorBomb, a novel framework
to overcome these limitations by constructing logic bombs us-
ing auto-contextualized triggers and onboard sensor-actuator
covert channels. These triggers align with the host app’s
sensor usage patterns and behavioral context, ensuring robust
activation and resistance to detection. During embedding,
SensorBomb automatically generates code that aligns sensor-
based triggers, hidden payloads, and actuator behaviors with
the host app’s context. As a result, the injected logic can
bypass static analysis, evade sensor anomaly detectors, avoid
user suspicion, and remain resilient against fuzzing tests.
At runtime, it leverages the app’s own behavior and sensor
characteristics to refine trigger patterns, thereby maximizing
attack success rates and guaranteeing zero false triggers.

To support practical deployment, we propose a lightweight
architecture and demonstrate its effectiveness through three
prototypes. Our evaluation shows that SensorBomb is the

first logic bomb framework capable of simultaneously evading
state-of-the-art static analysis, fuzzing tests, and sensor-state-
based anomaly detection. It eliminates key real-world limita-
tions by removing the need for external emitters, increasing
attack success rate from 70% to 99%, and reducing false-
trigger rate to zero. Large-scale experiments also demonstrate
that SensorBomb can be injected into existing APK files
without affecting their normal functionality. We summarize
our contributions as follows:

• We are among the first to introduce the concept of auto-
contextualization into logic bomb design, shifting the focus
from exploring new trigger conditions to embedding triggers
within the application’s context. This enables simultaneous
evasion of all current detection mechanisms.

• We develop a framework to systematically implement auto-
contextualized logic bombs, leveraging novel onboard covert
channels. Our design eliminates the need for external emit-
ters, minimizes computational overhead, and requires little
engineering effort, making it practical for mobile platforms.

• We validate our approach through three real-world proto-
types and large-scale injection experiments, demonstrating
its effectiveness, improved practicality, strong evasion capa-
bilities, and broad applicability.

• We conduct one of the first comprehensive analyses of
sensor-based logic bomb detection methods, identifying key
blind spots and offering insights to guide the development
of more robust future defenses.

The remainder of the paper is organized as follows: Sec-
tion II introduces the background; Section III presents the
problem and threat model, followed by the feasibility study
in Section IV; Section V presents the design of the Sensor-
Bomb framework and Section VI covers three prototypes;
Sections VII and VIII evaluate attack performance and detec-
tion evasion, respectively; Section IX discusses defenses and
limitations; and Section X concludes the paper.

II. BACKGROUND AND RELATED WORKS

Mobile Logic Bombs. Trigger is a piece of code that activates
operations under certain conditions [13]. It consists of a
triggering condition and a guarded code with a true branch
and a false branch. As shown in Figure 1(B), the trigger is
defined as a triplet t = (c, Tc, Qc), where c is the entry point,
and the true branch Tc and false branch Qc are invoked when
the trigger conditions are met or unmet, respectively.

When Tc involves a security-sensitive operation, it is a hid-
den sensitive operation (HSO) [8]. PScount [28] compiles a list
of sensitive APIs based on Android’s permission specifications
and scrutinizes a set of sensitive operations. An HSO is called
a suspicious hidden sensitive operation (SHSO) [9] or logic
bomb [7] if it contains suspicious or malicious operations. In
this paper, we use the terms HSO, SHSO, and logic bomb
interchangeably.

On the Android platform, resource APIs are often used to
construct trigger conditions through an entry-point function
f(x). It may use the API type invoked by an application (i.e.,

2

Fig. 1: (A) Conventional detection methods. (B) A typical
trigger structure. (C) Sensor-based logic bombs and detection.

At) and/or the associated API data (i.e., Ad). Sensors can serve
as source APIs and therefore be exploited to trigger logic
bombs, as shown in Figure 1(C). A malicious payload may
first probe onboard sensors to detect virtualized or emulated
environments (e.g., by identifying unrealistic accelerometer
noise or static gyroscope outputs [29]). Once a real device is
confirmed, it can monitor specific sensor readings, such as step
counts [18] or ambient light levels [21], to activate the trigger.
Consequently, even carefully crafted analysis environments
may fail to activate the logic bomb.

Finally, covert channels have been explored as transmission
paths for logic-bomb triggers to evade fuzzing-based detection
[20]. Prior work primarily adapted external-emitter covert
channels to mobile logic bombs and evaluated evasion only
against traditional malware detectors. Their resilience against
modern logic-bomb detection frameworks remains unexplored.
Logic Bombs Detection. Logic bombs typically exhibit simple
structures and therefore often leverage newly introduced APIs
as triggers. As a result, detection has evolved into a cat-and-
mouse game driven by the continual adaptation of both API
types and API usage patterns. Automated malware detection
consequently relies on static analysis and fuzzing to identify
logic bombs, as illustrated in Figure 1(A).

To counter logic bombs that evade dynamic analysis using
rare triggers, detectors employ fuzzing to expose hidden be-
havior. Early logic bombs relied on time- or event-based trig-
gers exposed by known inputs [13]. Later, environment-aware
triggers (e.g., virtual-machine checks) allowed malware to
remain dormant in emulators until bare-metal analysis systems
emerged [12], [30], [31]. As trigger mechanisms diversified,
random fuzzing was adopted to improve coverage [14], [15],
[32]. However, as triggers evolved to include communication
signals and complex user interactions, the fuzzing search space
expanded dramatically, reducing overall effectiveness.

IntelliDroid [11] mitigated this limitation by combining
dynamic analysis with symbolic execution to generate targeted
inputs. While no tools focus exclusively on sensor-value
fuzzing, frameworks such as FuzzDroid [25] and IntelliDroid
support sensor APIs and can inject synthetic readings to
explore sensor-driven paths and expose hidden logic bombs.

Static analysis applies taint tracking to identify triggers
by examining source APIs, trigger conditions, and branch
behaviors, with efforts focused on widening detectable At

and refining feature extraction for better accuracy. Early logic
bombs with limited triggers were easily caught by symbolic
execution and precise source analysis [7].

As logic bombs began exploiting diverse system events,
detectors extended coverage from specific APIs to all source
APIs. Tools such as HSOMiner [8] use features from trigger
conditions, branch behaviors, and their relationships to train
classifiers for capturing HSOs. To further improve detection
effectiveness, Difuzer [9] included all potential trigger APIs by
extracting a broad range of features from guarded code. Its up-
graded version, Difuzer++ [16], adopts content-aware analysis
to achieve high detection accuracy. Finally, user-action triggers
add complexity: InputScope [10] uses static taint analysis to
trace direct user commands and detect backdoors.
Defenses against Sensor-based Threats. The pervasive inte-
gration of sensors in smartphones has driven extensive research
on sensor-based threat detection [33]. As shown in Figure
1(C), sensor-based anomaly detection identifies anomalies in
sensor data/status that may result from covert-channel activity.
For instance, the 6thSense framework [34] introduces context-
aware intrusion detection for smart devices by monitoring
sensor states associated with each user activity and con-
structing a contextual model using Markov, Naive Bayes, and
LMT classifiers. More recently, SBTDDL [22] employs LSTM
models and augments its training data with malicious activities
crafted to closely resemble benign behavior.

III. THE PROBLEM AND THREAT MODEL

In this work, we consider an attacker who aims to design
logic bombs that are both stealthy and reliable, while remain-
ing resilient against evolving defenses. This requires satisfying
two core requirements: comprehensive evasion and practical-
ity. Comprehensive evasion requires the logic bomb to evade
all relevant detection mechanisms, including static analysis,
dynamic fuzzing, sensor anomaly detectors, online sandboxes,
and app-store vetting systems. Beyond initial deployment, the
logic bomb must also exhibit long-term robustness so that it
remains effective even as detection systems evolve. Finally, it
should maintain stealth on mobile platforms. Since users are
highly sensitive to abnormal actuator behavior on their devices,
the logic bomb must operate persistently without arousing
suspicion or degrading user experience.

Practicality, on the other hand, demands precise control and
reliability. The logic bomb must trigger only under specific,
attacker-defined conditions, ensuring exact timing and context
for payload activation. Once triggered, it must execute its
hidden behavior consistently across devices and environments,
achieving a high success rate. Meantime, it must avoid any
false triggers, as unintended activations could cause system
conflicts or raise alarms with users or automated defenses.

We propose a novel onboard covert channel triggered
logic bomb framework, called SensorBomb, incorporating
auto-contextualization capabilities to achieve all the goals.

3

Fig. 2: Comparison between benign sensor-based branch (after
filter 1) and malicious branch (after filter 2).

SensorBomb automatically leverages the host app’s contex-
tual information to select optimal hidden behaviors that are
intrinsically resistant to static analysis, and cannot be mitigated
through simple updates. It then establishes a novel onboard
covert channel through the app’s native actuator–sensor pair
to deliver triggers, thereby eliminating the need for any
external emitter while keeping precise control. Furthermore,
SensorBomb injects or configures actuator behaviors to align
with the host app’s context, effectively evading anomaly
detection and remaining unsuspicious to end users. Finally,
by exploiting real-time sensor data, it optimizes trigger timing
to maximize the attack success rate and employs long-term
statistical analysis to guarantee zero false triggers.
Threat Model. We adopt a common threat model that is
widely used in Android malware research [35]. First, we
assume the adversary could embed a SensorBomb into a
host application and trick victim users into installing it from
app stores or using sideloaded APK files. Host applications
may be either custom-developed legitimate apps or repackaged
versions of existing published apps, allowing for updates or
modifications. We also assume the user’s mobile device is
equipped with sensors and actuators required to construct the
onboard physical covert channel for the SensorBomb. These
sensors and actuators are commonly available on most devices,
as discussed in § IV-B.

The embedded APK file could bypass existing SOTA mal-
ware detection mechanisms, including open-source logic bomb
detection tools and online malware scanners. Our evasion
strategies and evaluations are discussed in §VIII. The Sensor-
Bomb acquire the same set of permissions as the host app to
access Android sensor and actuator APIs. It does not request
high-level permissions nor access sensor APIs at anomalous,
high sampling rates.

Finally, we assume that the device is connected to the Inter-
net, allowing it to receive trigger commands from the attacker’s
server via standard web APIs and multimedia channels, and to
transmit trigger timing information and the exclusion set back
to the server. All communications rely on standard protocols
and transparent content, rendering the app’s network behavior
indistinguishable from that of benign applications.

IV. ATTACK RATIONALE AND FEASIBILITY

A. Attack Rationale

Let us first illustrate the workflow of sensor-based apps. As
shown in Figure 2, after raw data acquisition, it is essential

Fig. 3: Microphones, cameras, and vibrators permissions used
by top-downloaded apps in each category.

to mitigate noise and interference that could obscure the
signal of interest. Digital filtering techniques, such as low-
pass and band-pass filters, are commonly applied to smooth
the sensor data and remove unwanted frequency components.
These filters are universal and can be configured with different
parameters to achieve various frequency passes. In legitimate
applications, the functions using sensor data as the input
typically fulfill three roles: (1) they perform data collection
and statistical analysis (e.g., counting steps). (2) They make
intelligent decisions on behalf of the user for sensitive op-
erations (e.g., making emergency phone calls when a fall is
detected). And (3) they trigger actuators to alert or provide
feedback to the user when specific events occur (e.g., vibration
notification when meeting an exercise goal). They correspond
to the three branches activated once the normal pattern is
satisfied, as shown in Figure 2.

In modern smartphones, sensors facilitate intelligent
decision-making and enable automated execution [36]. In other
words, sensor data can substitute for the user’s role in both
judgment and action. Consequently, many sensitive operations
activated via other APIs might appear unreasonable in static
analysis, but they seem perfectly plausible when based on
sensor data. Consequently, SensorBomb can automatically
analyze the host app, and then embed the malicious branch
into the host app as shown in Figure 2 after the trigger pattern
is satisfied. It leverages the same sensor data, and the sensitive
operation is “reasonable” to evade static analysis.

Next, SensorBomb needs to devise a way to transmit that
trigger through the sensors. Covert transmission channels are
a promising approach, but existing schemes rely on external
emitters and lack awareness of other sensor states, so they can
only modulate a single, predetermined sensor. As a result, sen-
sor anomaly detection like 6thSense [21] and SBTDDL [22]
can reliably detect the covert channels. Instead, we introduce
novel onboard covert channels that (1) eliminate any need
for external hardware or physical proximity and (2) embed
trigger signals within legitimate actuator behaviors. As shown
in the onboard covert channel in Figure 2, the trigger pattern is
transmitted by the legitimate actuator pattern. Consequently, in
both anomaly detectors and end users’ perception, the sensor
activity generated by the channels is indistinguishable from
normal actuator-driven events.

Finally, sensors continuously and passively collect data,
making them vulnerable to noise and interference. Although
the filter mitigates much of this noise, external factors (e.g.,
user behaviors) can still overwhelm the trigger signal or induce

4

Fig. 4: Available actuator-sensor pairs forming onboard covert
channels across various media.

false activations. To address this, SensorBomb leverages the
false branch of the malicious branch to infer the sensor’s
current status in real time. This provides a precise timing
reference for triggering, which boosts success rates, while
maintaining a statistical collection of normal sensor behavior
to filter out, thereby achieving 0 false triggers.

B. Feasibility Study

Sensors and Actuators Usage. The motion sensors have been
widely used in various apps such as fitness and health tracking,
gaming, gesture control, and navigation [37]. Besides, we also
analyze the usage of other popular sensors by referencing the
49 categories listed in the Android Play Console [38]. Using
the google_play_scraper tool [39], we retrieved the top 30
(Google’s maximum, but may fluctuate) apps in each category
and identified the permissions required by each app. As shown
in Figure 3, vibrator, camera, and microphone are the top three
sensors and actuators across a broad range of app categories.
Notably, the vibrator is used in an average of 71% of the apps,
and in three specific categories, its usage is universal (100%).

Web APIs are the most prevalent mechanism for achiev-
ing the desired actuator control. For example, JavaScript’s
Navigator object [40] offers a suite of APIs that enable the
control of actuators through the use of predefined patterns.
e.g., Navigator.vibrate() is compatible with Chrome, Firefox,
Opera, and Webview on Android [41]. Some actuators, such
as the screen and speakers, can be manipulated through media
content, like adjusting sound volume or displaying different
images. Currently, these web APIs and media manipulations
have no restrictions.
Onboard Physical Covert Channel. Physical covert channels
are primarily studied to transmit information between devices
or inter-apps. Consequently, external-emitter covert channels
have been studied extensively [42], [33]. Due to Android’s
strict background management [43], few onboard covert chan-
nels for inter-app communication have been explored. Because
it requires one app to run in the background, where sensor
access and actuator control are heavily restricted. To date, only
the vibration–accelerometer pairing has been studied [44].

We expand this scope by identifying a diverse set of onboard
actuator–sensor combinations that enable a wider range of
SensorBomb instances. As shown in Figure 4, we build on
four primary physical media for covert channels. Besides vi-

Fig. 5: The injection workflow of SensorBomb

bration, sound-based channels have been validated by motion-
sensor eavesdropping attacks [45], and we introduce a novel
light-reflection channel whose feasibility is demonstrated by
our prototype (§VII-C). Finally, although electromagnetic
channels are well studied, their physical properties, such
as power levels and frequency-modulation capabilities, still
present a promising avenue for covert communication.
Filter and Pattern Checking. As illustrated in Figure 2, the
embedded payload includes not only the trigger and hidden
operations but also a filter (e.g., Filter2) and a trigger-pattern
matching algorithm. Both the filters and the pattern-checking
are built on common algorithms utilized by the same sensor
API. For example, Table II compares the filter parameters and
pattern-matching algorithms for common accelerometer-based
functions and those in our SensorBomb implementation.
Because SensorBomb simply reuses well-tested, optimized
algorithms with only minor parameter adjustments, it remains
indistinguishable from benign code by signature-based detec-
tors or resource-usage anomaly analysis.

V. THE SENSORBOMB FRAMEWORK

A. Overview

The SensorBomb framework injects guarded code contain-
ing hidden sensitive operations into a host application, which
is activated when the target sensor’s data stream matches a
pre-determined trigger pattern. Figure 5 depicts the injection
workflow of SensorBomb. Given a host app, the framework
unpacks the APK and performs static auto-contextualization
analysis (§V-B): (i) it first gathers information about the types
of sensors and actuators used by the host app and identifies
potential onboard covert channels that can be established and
exploited by the SensorBomb. (ii) It then selects one covert
channel and retrieves the physical specifications of the target
sensor and actuator, such as their operating frequencies, to
guide sensor data-stream extraction. (iii) Finally, it analyzes
the source code to extract features such as the sensitive oper-
ations invoked and use them to guide context-aware guarded-
code generation. In addition, the framework extracts metadata
about the app, such as its name and category, to retrieve
relevant usage data from the app-behavior knowledge base.

Next, the framework generates the code of the Sensor-
Bomb. As shown in Figure 6, an embedded Sensor-
Bomb consists of four components: 1⃝ sensor data filtering
(§V-C1), 2⃝ guarded code (§V-C2), 3⃝ trigger-pattern gen-
erator (§V-C3), and 4⃝ a communication interface with the
remote server (§V-C4). It is worth noting that the guarded
code and trigger-pattern generator are designed to perform
dynamic auto-contextualization analysis once the sensor bomb
is embedded and running within the host app. Using the live
sensor data stream, the false branch of the guarded code

5

TABLE II: Components of legitimate sensor data-based applications and SensorBombs

App Type Frequency Filter Function Threshold Decision Checking Algorithms

Step Count lower (< 3Hz) low-pass peak detection calibrate with empirical data timing, pattern matching
Fall Detection full (0-200Hz) no peak detection predefined with empirical data followed by a period of inactivity, or ML
Accelerometer Bomb vibrator (80− 100Hz) band-pass peak detection predefined with empirical data pattern matching, or ML

Fig. 6: SensorBomb design overview

evaluates the robustness of the covert channel and informs
the remote server of the optimal activation timing, while the
trigger-pattern generator extracts exclusion patterns reflecting
normal usage scenarios to avoid false activations.

To activate the sensor bomb, the remote server deploys a
trigger-pattern generator 3⃝, synchronized with its counterpart
on the device, along with an actuator controller 5⃝, which
issues the actuation commands and simulates cover behavior
such as a notification event (§V-D).

Finally, the framework locates the insertion point where
the sensor data is used, performs the code injection, and
repackages the app with the embedded bomb. In this work,
we follow standard mobile-app instrumentation for unpacking,
insertion-point discovery, and repackaging, using existing tools
[17]. So, we focus on auto-contextualization analysis and
context-aware sensor-bomb generation in this section.

B. Static Auto-contextualization Analysis

Given a host app, the SensorBomb framework first uses
Androguard [46] to unpack the APK and inspects the bytecode
to extract contextual attributes such as the app’s package name
and the types of sensors and actuators used. It then retrieves
the official app-category metadata by querying the Google Play
Store using the extracted package name as the identifier via
the google_play_scraper library.

Next, it applies Soot [47] to identify entry points across
the package following prior studies [8], [9], and constructs a
control-flow graph (CFG) by exploring all reachable code. Us-
ing this CFG, we identify sensitive methods invoked along the
sensor-data processing path. We refer to the sensitive-API list
in PScout [28], which contains approximately 70 permissions,
and identify a subset of 10 permissions that are commonly
used in sensor-driven events, such as send_SMS, read_contact,
and internet. For each app, we record all sensitive methods
requiring these permissions, as well as those invoked within
the sensor-processing logic, to guide guarded-code generation.

C. Context-aware Sensor Bomb Construction
A sensor bomb is constructed based on the selected covert

channel and embedded into the host app. Next, we describe
the design of its four components.

1) Sensor Data Filtering: Given a covert channel, we first
determine the filtering frequency for extracting the corre-
sponding digital bitstream from the raw sensor waveform.
Each sensor or actuator operates within its own sampling
or activation frequency range. For example, accelerometers
typically sample at 50Hz by default and operate across 10-
200Hz, while vibrators typically operate between 10 and 200
Hz, with a common resonant frequency of 80 to 200 Hz. The
chosen filtering frequency f should fall within the intersection
of these ranges to ensure that the actuator’s modulation can
be reliably captured by the sensor and is further constrained
by the Android’s sampling-rate limits.

Next, we isolate the filtering frequency band associated
with the covert channel using a band-pass filter (BPF), which
passes frequencies within the target band while attenuating
frequencies outside that band. For a raw sensor signal x(t),
we compute the magnitude of the filtered signal and smooth
it using a windowed average:

X(t) = |BPF (x(t))| ×W (∆t) (1)

where the time window W (∆t) must have a minimum width
of 2/f to capture a sufficient portion of the carrier signal
for reliable bit extraction. Finally, we apply a threshold θ to
output the binary bitstream B(t) = {b(t)}, where b(t) = 1, if
X(t) ≥ θ, and b(t) = 0 otherwise. The threshold value is de-
termined by the signal conditions of the covert channel. When
signals are strong and well separated, we use a fixed threshold
determined through preliminary calibration. In environments
with high variability, low signal-to-noise ratios, or device-
specific inconsistencies, we apply the classical Ridler–Calvard
method [48] to iteratively compute an optimal threshold that
separates the distributions corresponding to the actuator-off
and actuator-on states.

2) Guarded-code Generation: The guarded code consists
of a trigger condition, a true branch Tc, and a false branch
Qc. In the code-generation phase, we introduce two novel
schemes: one to evade static analysis and the other to capture
exclusion patterns and estimate the optimal triggering time
through dynamic auto-contextualization.
Static Detection Evasion. The trigger condition is constructed
as an if statement that matches Bl, the last l bits of the sensor
datastream B(t), and the current trigger pattern Pl (§V-C3).
To construct Tc and Qc for evading static detection, we focus
on the selection of hidden sensitive operations (HSOs) for Tc,
the alignment between the trigger condition and the operations
along Tc, and the alignment between the two branches.

6

TABLE III: Features used in HSOMiner [8] and Difuzer [9]
Feature Binary Evasion Indicator Condition-path Relation Behavior Difference Trigger Condition

Notion N D R B P S M1 S1 DF IR J, AD, DD SI

Meaning is native
code used

is dynamic
loading used

is reflection
used

are background
tasks used

are condition’s
parameters used

of sensitive
methods invoked

of methods
invoked only in GC

of sensitive methods
invoked only in GC

data
flow

implicit
relation

behavior difference
between branches

condition related
to system input

Note: Features defined in Difuzer and HSOMiner are denoted by single letters and italicized double letters, respectively. # denotes count.

Intuitively, detection is performed by a classifier C, typi-
cally a deep neural network, which outputs a binary decision
ŷ = C(F(C)), where F is a feature extraction function and
C denotes the host app’s code (e.g., the global CFG). Hence,
our goal is to generate guarded code that, once embedded,
preserves the classifier’s original prediction.

We consider two SOTA static detectors, HSOMiner [8]
and Difuzer [9], and summarize the features they rely on
in Table III. In our design, we intentionally avoid common
evasion techniques in the guarded code, such as native code
(“N”), dynamic loading (“D”), reflection-based code (“R”),
and background tasks (“B”), which aim to shift critical logic
outside the detector’s scope or conceal execution path until
runtime. As a result, our guarded code does not exhibit these
features. Since we adopt the same sensor used by the host
app in the trigger condition, the presence of the system-input
(SI) feature, which reflects the use of sensor input, does not
introduce any anomaly.

Regarding the conditional-path relation, our strategy is to
select sensitive operations that align with the sensor used in
the trigger condition to embed into Tc. To support this, we
analyze a large corpus of real-world APKs and construct a
knowledge base (see Table IX in Appendix A) that records
sensitive methods commonly used in legitimate scenarios for
three types of sensors, i.e., accelerometers, camera sensors,
and motion sensors. We select sensitive methods based on the
sensor type and whether they are invoked in the host app as
HSOs (obtained during static auto-contextualization), ensuring
that the resulting “S1” remains consistent with values observed
in other guarded-code instances. We also constrain the number
of HSOs in Tc so that it does not exceed the average number of
sensitive methods observed across all guarded-code instances
(the average “S”). We deliberately include a code logic that
uses the sensor input to ensure the feature “P” remains true.
Since the inserted guarded code is small, the feature “M1”,
“DF ”, and “IR” provide little discriminatory power.

Lastly, for the behavior difference features, we ensure that
the sensitive methods align with legitimate uses of the selected
sensor and that the number of app methods invoked in both
branches remains consistent. As a result, the distance features
“J”, “AD”, and “DD” appear normal.

Dynamic Auto-contextualization for Trigger-pattern En-
hancement. In the false branch Qc, we additionally record
each l-bit sensor stream Bl that fails to match the trigger
pattern. These bitstreams and their corresponding sensor read-
ings reflect legitimate user behavior and must be excluded
from valid trigger patterns to guarantee a 0% false-trigger rate.
In implementation, we maintain an exclusion-pattern set PE

initialized with patterns derived from legitimate sensor-data

profiles in our real-world APK knowledge base and refined by
continuously appending newly observed exclusion patterns.
Dynamic Auto-contextualization for Optimal Trigger Timing.
The attack success rate relies on the robustness of the actu-
ator–sensor covert channel, that is, how reliably the sensor
can recover the actuator’s signal in the presence of channel
noise. Channel quality depends on the actuator’s emission
strength, the sensor’s sensitivity, and the level of environmental
interference. If the actuator emits A(t) at time t, the sensor
observes S(t) = A(t)+ I(t), where I(t) captures interference
and noise. Intuitively, we aim to identify intervals with a large
signal-to-interference ratio A(t)/I(t).

For the target sensor, after converting raw sensor readings
into a binary stream, a feasible trigger opportunity corresponds
to periods when all observed bits are zero. To ensure stability,
we require that every sample within a sliding window of length
δt remains zero, that is, for any t′ ∈ [t, t + δt], B(t′) =
0. Only intervals satisfying this condition are considered the
optimal timing, as they indicate a stable state without transient
fluctuations. Because the decision is made after observing the
full window, the effective trigger time occurs at (t+ δt).

3) Trigger-Pattern Generation: The trigger pattern is an l-
bit binary stream matched in the trigger condition to HSO
activation. Our design addresses three key tasks: (i) deter-
mining an optimal pattern length l that balances transmission
errors and false triggers while increasing fuzzing difficulty;
(ii) introducing dynamic pattern generation to further reduce
the effective search window for fuzzing; and (iii) embedding
trigger patterns within legitimate actuator behavior to evade
abnormal detection.
Pattern Length. As shown in Figure 6, the bomb extracts Bl

from the raw sensor data over the covert channel, while the
trigger pattern Pl is output by the trigger-pattern generator.
With the increase of l, the probability of transmission errors
grows following 1−(1−p)l, where p is the channel BER, while
the probability of a false trigger decreases exponentially as
e−αl, where α is the exponential decay rate that varies across
sensors (e.g., we adopt α = 0.2 for common accelerometers
and α = 0.45 for camera sensors). Meanwhile, increasing l
enlarges the effective search space, reducing the effectiveness
of dynamic fuzzing by approximately l ln 2. We should con-
sider all three factors to determine the optimal pattern length:

l∗ = argmax
l∈L

wd (l ln 2)− wf e
−αl − we

[
1− (1− p)l

]
(2)

where wd, wf , and we are weights, and L = [lmin, lmax]
denotes the soft boundary that reflects typical user-actuator in-
teraction intervals. For example, selfie countdowns commonly
last 3, 5, or 10 seconds, which yields lmin = 3 and lmax = 10.
Our experiment shows that for a highly stable channel (e.g.,

7

p = 0.1%), the optimal trigger pattern length should exceed
5 for camera-based channels and 11 for accelerometer-based
channels to keep the false-trigger rate below 10%.
Dynamic Pattern Generation. Dynamic detectors such as
IntelliDroid [11] record trigger behaviors to guide random
fuzzing. To counter this, we design a dynamic pattern-
generation scheme in which the trigger pattern changes over
time or with an internal counter. We generate the patterns using
a keyed hash function (e.g., HMAC-SHA256), ensuring that
successive trigger patterns differ and cannot be predicted. Each
new pattern is checked against the exclusion-pattern set before
use. Finally, we deploy an identical trigger-pattern generator
on the server side, and let the local generator periodically share
its exclusion-pattern set to keep both generators synchronized.
This enables the server to drive the actuator in a coordinated
manner, producing the sensor-data changes required for reli-
able activation.
Anomaly Detection Evasion. Anomaly detectors based on
sensor states, such as 6thSense [21] and SBTDDL [22], learn
normal multi-sensor transitions using statistical or deep learn-
ing models. Each state is represented as a vector X ∈ Rn, and
the classifier Cθ is trained on labeled examples (X(j)), y(j)).

To evade detection, the state vector produced by the
covert channel must preserve the same features as those pro-
duced by legitimate actuator behavior, ensuring Cθ(Xcovert) =
Cθ(Xlegitimate). Consequently, the actuator behavior induced by
the trigger pattern must mimic that observed in normal usage
so that the resulting sensor states appear benign.

For continuously sampled sensors, such as accelerome-
ters, state transitions are determined by comparing ā =
1
T

∫ t0+T

t0
a(t) dt, the average reading over a time window T ,

against a threshold τ . As a result, the sensor-state changes
caused by a SensorBomb depend on the proportion of bits
‘1’ in the trigger pattern relative to this detection threshold.
Given τ , the number of ‘1’s required to induce a state change
is τ l/(∆t · Ia), where Ia is the accelerometer reading under
continuous vibration and ∆t is the sampling window. There-
fore, the trigger pattern must be crafted to mimic legitimate
actuator behavior so that the resulting sensor states satisfy the
anomaly-evasion condition.

4) Communication with Remote Server: In the sensor
bomb, we embed a lightweight communication layer to support
interaction with the remote server. In one direction, the bomb
sends the optimal triggering time and the latest exclusion
trigger patterns to the server to synchronize its trigger patterns
generator with the local one. We implement this by hard-
coding the server’s URL. Because this URL differs from
the host app’s backend endpoint, it may raise suspicion.
Although techniques such as dynamic link redirection or URL
masking (e.g., abusing in-app pop-ups) could conceal such
modifications, we do not employ them here, as they fall out
of the scope. In the other direction, the server sends actuator-
control commands, generated based on the current trigger
pattern, to operate the target actuator on the mobile device.
Many Android applications embed a WebView [46], an official
Android system component that provides a built-in browser

Algorithm 1: Inserted code of a sensor bomb
Data: Raw sensor data stream St; filter params

(f2,∆t2, θ2); selected HSO; pattern lengh l
1: webView.loadUrl(https://server.com)
2: Function SensorDataProcessingFunction():
3: data ← getSensorValues(St)
4: filter1 ← applyFilter(f1,∆t1, θ1)
5: normSig ← filter1(data)
6: if normSig.match(normalPat) :
7: benignBehavior()
8: filter2 ← applyFilter(f2,∆t2, θ2)
9: trigStream ← filter2(data)

10: triggerSig ← getLastBits(trigStream, l)
11: if trigSig.match(triggerPat) :
12: HSO()
13: else:
14: excludedPatSet.append(trigSig)
15: inferTiming()
16: Function GenTriggerPattern():
17: triggerPat ← DynamicPattern(l)
18: assert triggerPat /∈ excludedPatSet
19: return triggerPat
20: Function GenNormalPattern():
21: normalPat ← NormalPattern()
22: return normalPat

engine for rendering HTML and JavaScript content within
native applications. Therefore, we leverage the WebView API
to send commands to the actuator.

5) Sensor Bomb Implementation: We illustrate the sensor
bomb’s code logic in Algorithm 1, where the colored seg-
ments denote the code injected into the host app’s sensor-data
processing module. It adapts the app’s sensor data filter with
parameters for the covert channel, e.g., f2, ∆t2, and θ2, to
convert the raw sensor readings into a binary stream (Lines 8-
9), and extracts the last l bits to construct the activation pattern
triggerSig (Line 10). The function GenTriggerPattern
generates dynamic patterns (Line 17), which are checked
against the excludedPatSet (Line 18), and then matched with
the activation pattern in the trigger condition (Line 11). In the
false branch, the triggerSig are recorded as exclusion patterns
into excludedPatSet (Line 14). The trigger-timing inference
notifies the server if trigSig is all zeros (Line 15). In the true
branch, the HSO is activated.

The sensor bomb, implemented in Java using a compressed
style and well-packaged utility functions, is lightweight. For
example, the Java snippet from our accelerometer-based pro-
totype in Appendix B consists of roughly four lines for the
trigger-pattern generator, four lines for the guarded logic in-
jected into onSensorChanged, one line for a potential HTTPS
transmission, and one to four lines for field initialization.

D. Actuator Controller

The actuator controller sends commands to activate the
actuator, which may raise users’ suspicions, as they are
sensitive to the context in which an actuator is activated.
Therefore, the sensor bomb must simulate actuator behavior
that is both contextually appropriate and indistinguishable

8

Fig. 7: The Android app interface of (A) Accelerometer Bomb,
(B) Camera Bomb, (C) User Behavior Bomb.

from normal usage. We consider three factors affecting the
expected actuator behavior: (i) contextual alignment Ca, which
requires the sensor–actuator pair to be commonly used within
the host app’s category. For example, fitness apps routinely use
vibration notifications together with accelerometer readings.
If the pair appears in our knowledge base, we set Ca to 1.
(ii) Behavior alignment Cb, which requires the actuator action
to remain meaningful within the app’s functional context.
For example, when accelerometer readings stay near-zero for
30 minutes, a fitness app may remind the user to move.
Triggering a vibration with such a message appears reasonable.
If the injected code provides state information to preserve this
meaning, we set Cb to 1. And (iii) controlled variation Cv ,
which requires the actuator pattern to remain within the range
of normal variations learned from legitimate usage. Because
sensor-based anomaly detection is stricter than user perception,
we set Cv to 1 when the anomaly-evasion condition is satisfied.
We aim to meet all three goals with information obtained
from static auto-contextualization and our knowledge base. An
example of the vibration-usage knowledge base is provided in
Table X in Appendix D.

VI. SENSORBOMB PROTOTYPES

The Android malware ecosystem is largely dominated by
mass injection and repackaging techniques, which attackers
employ for efficient propagation [49]. In contrast, highly
stealthy threats are typically delivered through custom-built
malware, allowing adversaries to evade signature-based sys-
tems and maintain a minimal footprint in public threat datasets
[50]. To examine both ends of this spectrum, we developed
three custom SensorBomb prototypes to model stealthy,
hand-crafted malware and conducted large-scale experiments
to evaluate the robustness of our injection mechanism under
mass-injection scenarios (see §VII-F). In this section, we
present three prototypes. The Accelerometer Bomb prototype
represents the broadest class of attacks, as accelerometers are
used across virtually all categories of Android applications.
The User Bomb prototype enables direct comparison with
existing real-world sensor-based logic bombs that rely on user

behaviors as triggers. Finally, the Camera Bomb prototype
validates our newly discovered onboard covert channel.
Accelerometer Bomb. We developed a host app in the health
and fitness category, which exhibits nearly 100% accelerome-
ter usage, to enable fair comparison of attack efficacy against
existing logic-bomb implementations. As shown in Figure 4,
the corresponding actuators for this category are the vibration
motor and the speaker. Moreover, Figure 3 indicates that
over 90% of health and fitness apps use the vibration motor.
Accordingly, we select it as our actuator. The host app provides
step-counting and fall-detection features (Figure 7(A)). Our
trigger pattern aligns with the app’s normal workflow: when
prolonged inactivity is detected, the app reports this condition
to the server, which in turn issues a vibration-based reminder
prompting the user to exercise.
Camera Bomb. As shown in Figure 3, over 80% of beauty
apps use the camera, and among the evaluated light-channel
actuator–sensor pairs in Figure 4, the screen–front-camera
combination provides the highest robustness. We therefore
embed the SensorBomb into a selfie app, leveraging the
typical user behavior of holding the phone at a relatively
fixed distance from the face, which ensures stable reflection
of screen-emitted light into the front camera. In this design,
modulated screen colors serve as trigger signals: the light
reflected from the user’s face is captured by the front camera
in real-time. The app monitors facial brightness and, when
illumination drops below a predefined threshold, automatically
increases screen brightness. This behavior mirrors common
practices in commercial selfie apps (e.g., B612), which adjust
the screen brightness under low-light conditions to enhance
facial illumination and improve photo quality. As shown in
Figure 7(B), the upper half of the interface displays the live
selfie preview, while the lower half shows the countdown
timer, whose background color varies with the trigger pattern.
User Bomb. Prior real-world attacks have relied on uncon-
trolled user behaviors (e.g., step counts) as trigger conditions,
resulting in low and highly variable success rates. In contrast,
SensorBomb treats the user as a programmable actuator,
and action-control games offer a controlled environment for
directing user motions. Our third prototype embeds Sensor-
Bomb into a car-racing game: by designing in-game tasks
(Figure 7(C)) that lead the player through a predetermined
sequence of left and right turns, the hidden sensitive operation
is reliably triggered once the induced motion pattern matches
the trigger pattern. The detailed configurations and parameters
for all three prototypes are summarized in Table IV.
Injecting Code into Existing APKs. When injecting sensitive
operations, SensorBomb must add any missing permissions
required by the embedded logic. However, introducing new
permissions increases the risk of detection, as a simple dif-
ference between the original and modified APK can reveal
added privileges and expose the injected payload. A practical
mitigation is to choose host apps that already request the
necessary sensor, actuator, and sensitive operation permissions,
thereby reducing the visibility of injected changes. Additional
techniques for evading repackaging-detection systems exist but

9

TABLE IV: Host app, logic, and parameters of three SensorBombs

SensorBomb Host App
Sensor Data Filtering Actuator Logic Trigger Enhancement

f ∆t θ actuator behavior logic l timing

Accelerometer bomb step count & fall detection 80− 100Hz > 20ms fixed vibrator notification < 17bits stable
Camera bomb selfie 1Hz 1s optimal screen counting down 3, 5, 10 low ambient light

User bomb car racing game 50Hz on difficulty level automatic user user playing unlimited playing

TABLE V: Characteristics of tested Android smartphones

Category Brand Model API
ver.

Max screen
brightness

Screen
size Ratio Vibrator

axis

Low-end

Xiaomi Mi 8 29 600 nits 6.2 in 2.08 Z-axis
Samsung S9 28 630 nits 5.8 in 2.06 Z-axis
OnePlus 10T 30 950 nits 6.7 in 2.23 X-axis
Motorola Edge+ 32 1000 nits 6.7 in 2.22 X-axis

Flagship
Samsung S23+ 33 1750 nits 6.6 in 2.17 X-axis
Samsung S24+ 34 2600 nits 6.7 in 2.17 X-axis
Vivo x200 35 4500 nits 6.7 in 2.22 X-axis

fall outside the scope of this work.
On the Android platform, sensor readings are first stored in

a system-managed buffer and then delivered to applications as
independent event objects. Multiple components can access
these readings concurrently, and the data flow is strictly
unidirectional, from the sensor driver to the application. As
a result, injecting the guarded code does not interfere with
other functionalities in the host app; the injected logic simply
receives a copy of each sensor event and processes it locally.

VII. ATTACK PERFORMANCE EVALUATIONS

A. Experimental Settings

Experimental Platforms. We evaluate our prototypes on
seven Android smartphones with diverse configurations, as
summarized in Table V. These devices span multiple popular
brands and Android versions. The actuators include two types
of vibration motors, one operating along the x-axis and one
along the z-axis, and the screen sizes and maximum brightness
levels are representative of low- to high-end smartphones.
Dataset. For the Accelerometer Bomb, we use the Human
Activity Recognition Dataset (KU-HAR) [51], which contains
accelerometer readings for 18 activities collected from 90
participants, including 1,945 raw activity samples and 20,750
subsamples. To evaluate the User Behavior Bomb, we recruited
15 volunteers from the University of Kansas to act as users
and recorded the number of cars that passed in the car-racing
game. For the Camera Bomb, we collected data under five
representative illumination conditions.
Evaluation Matrix. We define a trigger pattern generated by
the actuator that successfully activates the malicious function
as a true positive (TP), and an unsuccessful activation as a false
negative (FN). Cases where no actuator trigger is produced but
the attack is activated are counted as false positives (FP), while
cases with neither trigger generation nor activation are true
negatives (TN). To evaluate attack performance, we use the
true positive rate (TPR) and false positive rate (FPR), where
TPR = TP

TP+FN and FPR = FP
FP+TN .

Fig. 8: TPR and FPR of an external emitter logic bomb.

In sensor bombs, the FPR is generally low due to the large
number of TNs, but to avoid unintended activations that could
crash the app or alert the user, the FPR must be kept at 0%.
In contrast, occasional FNs do not harm system functionality,
so a perfect TPR is desirable but not strictly required. There
is an inherent trade-off: achieving 100% TPR demands more
restrictive trigger timing, which attackers can tune based on
their operational goals.

B. Evaluations of the Accelerometer Bomb

We compare our method with the vibration-channel ap-
proach of [20]. To reduce transmission loss and environmental
noise, we adopt an optimized version of their setup in which
a smartphone emitter is placed in direct contact with the
target device, ensuring strong mechanical coupling. For fair
comparison, we fix L=14 and ∆t=0.07, to guarantee robust
performance across both external and onboard covert channels.

Prior vibration–accelerometer logic bombs report high TPRs
under stable conditions, consistent with our results in Figure 8.
However, in realistic usage, such stability makes the induced
vibrations noticeable, forcing attackers to operate in naturally
noisy environments to mask them. Under these dynamic con-
ditions, the TPR drops sharply (Figure 8) because vigorous
motion produces accelerometer readings that overwhelm the
vibration signal, an inherent limitation that cannot be compen-
sated for. In contrast, the Accelerometer Bomb monitors real-
time sensor states and triggers only when the device is stable,
producing no activations during movement. This maintains
a high TPR, avoids user suspicion, and leverages legitimate
actuator behavior for stealth.

The same observation holds for FPR. In stable condi-
tions, both the traditional attack and the Accelerometer Bomb
achieve a 0% FPR (Figure 8). Traditional schemes avoid
using simple patterns (e.g., all-zeros or all-ones) because they
are prone to false triggers. However, in motion-heavy sce-
narios, accelerometer readings fluctuate dramatically, causing
the traditional approach to exhibit a sharply increased false-
trigger probability, for example, an FPR of 0.4% while running
(Figure 8). In contrast, the Accelerometer Bomb consistently
maintains a 0% FPR.

10

TABLE VI: TPR and FPR of Camera Bomb

Scenarios Dim
bedroom

Normal light
bedroom

Bright
living room

Daylight
office Sunlight

Times/TPR Low-end 120/100% 108/95.4% 8/87.5% 0/- 0/-
Flagship 10/100% 10/100% 0/- 0/- 0/-

FPR All 0% 0% 0% 0% 0%

Note: dim bedroom: no lights or a night light; normal light bedroom: one
floor lamp; bright living room: overhead brighter bulb and TV screens.

C. Evaluations of the Camera Bomb

Light-channel covert communication is rarely practical be-
cause it typically requires strict control over the external
light source’s angle, distance, and intensity [20]. Prior work
shows that effective transmission demands angles above 45°
(ideally 90°) and a distance tuned to the source’s brightness
and orientation. However, selfie use naturally satisfies these
constraints: our experiments show that users often hold the
phone at roughly 90° to their face, which occupies more than
50% of the camera frame at a distance of ∼ 20− 40cm. This
stable geometry enables Camera Bomb to reliably build the
covert channel and identify optimal trigger windows.

We evaluated the Camera Bomb under five typical lighting
conditions (Table VI). Each participant performed two trials on
every test device, producing 120 total tests on low-end phones.
In dim-bedroom conditions, every moment fell within the opti-
mal trigger window, yielding 120 attempts and a 100% TPR. In
normal nighttime bedroom lighting, 12 attempts were outside
the optimal window, resulting in a 95.6% TPR. All misses
occurred on two devices with low maximum brightness when
volunteers stood near external lights, reducing reflected screen
illumination. No triggers were attempted under office lighting
or direct sunlight, where ambient illumination overwhelms the
screen’s output, making activation infeasible.

Because users typically remain still during selfies and the
background is stable, the resulting sensor patterns tend to be
entirely ‘1’s or ‘0’s. To prevent false triggers caused by sudden
background changes, we proactively add all binary patterns
containing exactly one contiguous run of ‘1’s with all other
bits set to ‘0’ to the exclusion set. In our experiments, the
FTP remained at 0%. These excluded patterns represent only
5.37% of all possible patterns, so the reduction in the usable
trigger-pattern space is minimal.

D. Evaluations of the User Bomb

We compare our user behavior bomb with the Cerberus
bomb [18], which uses a step-count trigger to activate SMS
control and contact harvesting. Cerberus uses a simple policy:
if the device is used by a real person, step counts will even-
tually increase until a preset threshold is reached. However,
this creates a fundamental trade-off between success rate and
fuzzing time. As shown in Figure 9(A), increasing the step
threshold tightens the trigger condition but sharply reduces
the fraction of users who naturally meet it. According to [52],
the global average daily step count is 4,961 with a standard
deviation of 2,684. Setting the trigger at 5,000 steps yields
a 50% success rate with only 0.46 hours of fuzzing time.

Fig. 9: TPR comparison between User Bomb and Cerberus.

Extending the fuzzing time to 1.85 hours requires raising the
threshold to 20,000 steps, a level reached by fewer than 1%
of users, which dramatically lowers the success rate.

In contrast, the User Bomb uses a sequence of user actions
as its trigger, dramatically increasing the time required for
successful fuzzing while still maintaining a high TPR. In this
setting, performance is driven largely by user engagement, so
the app must be interactive enough to guide users through the
required actions. To strengthen engagement, we allow users to
select their preferred difficulty level. As shown in Figure 9(B),
with l=16, the TPR remains above 95% while the required
fuzzing time reaches 163.8 hours. The fuzzing cost grows
exponentially with longer action sequences: increasing l by
just 2 reduces TPR slightly to 90% but pushes fuzzing time
beyond 700 hours. This design provides strong resistance to
fuzzing attacks while consistently achieving a high TPR.

Unlike Cerberus, which ignores FPR and accepts any trigger
due to its inherently low success rate, our user bomb explicitly
controls for false positives. The probability that an l-bit trigger
pattern matches a random l-bit segment in a binary stream is
(1/2)l. For l=16, this is only 0.0015%. With an average of
three cars per second, a mistrigger occurs roughly once every
3.03 hours. To eliminate these FPs, the server applies an l-
bit sliding window and accepts a trigger only when the most
recent l bits exactly match the current pattern, or match it with
the last bit flipped (to accommodate a player’s last-bit error).
In a 20-hour simulation, this approach achieved a 0% FPR.

E. Threats to Validity

In the main experiments, we intentionally used low-end
phones, as SensorBomb is expected to be less effective on
them due to their weaker actuators, providing a conserva-
tive assessment of attack effectiveness. The feasibility of the
vibrator-accelerometer and user-accelerometer channels across
diverse hardware has been validated in prior research [44],
[53] and deployment [18]. Our experiments with three flagship
devices (Samsung S23+, Samsung S24+, and Vivo X200, as
summarized in Table V) also confirmed that the vibrator-
accelerometer and user-accelerometer channels behave sim-
ilarly as the low-end phones. However, the screen-camera
channel has not been studied/tested on diverse devices.

We further evaluated the screen-camera channel on three
new flagship devices. Note that the advertised peak brightness
occurs only under highly restricted conditions, such as HDR
boosts with less than 5% active screen area, whereas the
sustained full-screen luminance in daily use is much lower
(typically 1,000–2,000 nits) [54]. Meanwhile, the CameraX

11

API [55] introduces a higher level of abstraction, and recent
flagship phones use advanced AE (auto-exposure) and AWB
(auto–white balance) for front cameras to normalize bright-
ness. These system-level optimizations reduce the observable
impact of controlled screen-luminance modulation.

As reported in Table VI, SensorBomb achieved 100%
ASR in a dim bedroom and maintained high ASR in a
normally lit bedroom on all devices. In the normal bedroom,
the measured brightness of a black screen was higher than that
of a white screen due to aggressive AE/AWB compensation.
Our threshold-adaptation mechanism (§V-C) correctly handled
this as a valid trigger opportunity and automatically adapted to
the compensation. Meanwhile, in bright living rooms, AE and
AWB effectively stabilize brightness so that screen-brightness
modulation no longer produces observable changes in camera
input. Flagship devices fail to establish a feasible attack
window. The success cases came from the low-end device,
whose lack of advanced front-camera AE/AWB algorithms
allowed the screen-brightness variations to remain detectable.

F. Large-scale Injection

We identify a large set of Android apps, inject Sensor-
Bomb, and evaluate its impact on their normal operation.
Data Preprocessing. We first performed static analysis to
identify APKs from AndroZoo [56] that meet the requirements
of both SensorBomb and the AndroBomb injection tool [57]:
(1) Apps must employ the sensors and actuators used by
SensorBomb. (2) Apps must target Android API levels above
22, as the Soot framework [47] used by AndroBomb cannot
reliably handle lower API levels. (3) The sensor-data process-
ing classes must use fully qualified names consistent with the
app’s package name, as strictly required by AndroBomb. (4)
Some methods invoked by AndroBomb are incompatible with
different Android API versions. We eliminated incompatible
APKs. We randomly selected 5,000 APKs and enforced five
filters with static analysis using Androguard [46]. 1,729 APKs
remained for SensorBomb injection.
Results. SensorBomb was successfully injected into 1,403
out of 1,729 APKs. The failures were primarily caused by
unexpected exceptions thrown by the AndroBomb tool, most
notably buffer-underflow crashes in ManifestEditor. For com-
parison, AndroBomb reported a 54.5% overall failure rate
[57], including apps targeting API levels below 22 (< 30%
in our dataset and eliminated in static analysis) and crashes
in the ManifestEditor (18.9% in our dataset). To confirm that
SensorBomb did not introduce additional failures, we tested
all 326 failed APKs with the original AndroBomb. They all
exhibited the same crash, confirming that the failures stem
from unexpected exceptions in AndroBomb.
App Operations. We developed a lightweight automated
testing pipeline to evaluate the 1,403 APKs with Sensor-
Bomb injected. The pipeline uses ADB-based batch operations
to install each APK, launch the app, wait 45 seconds for
initialization, and then collect logs, exit codes, and device-state
information to determine whether installation and execution
succeeded [58]. A small UI script is used to dismiss permission

TABLE VII: Difuzer evasion testing results
HSO contacts calls photos location microphone network bluetooth SMS

Acc bomb Y | ✓ Y | ✓ Y | ✓ Y | ✓ Y | ✓ Y | ✓ Y | ✓ Y | ✓
Cam bomb Y | ✓ N | × Y | ✓ Y | ✓ Y | ✓ Y | ✓ N | × N | ×
User bomb N | × N | × Y | ✓ N | × Y | ✓ Y | ✓ Y | ✓ N | ×

Note: Y means selected by SensorBomb, while N means not; ✓ means
successfully evade Difuzer and × means not.

dialog (clicking “OK”) and uninstall the app after testing. In
this automated evaluation, 100% of the injected APKs ran
normally, indicating no impact on baseline app behavior.
Usability. Following AndroBomb [57], we design a manual
evaluation process to assess SensorBomb’s impact on host-
app usability. We randomly sampled 149 out of 1,403 infected
apps (with 99% confidence level at 10% Margin of Error). We
first confirmed that they were correctly infected and the trigger
could be activated. To systematically evaluate the usability of
heterogeneous apps, we categorized them into a smaller set
of buckets based on their interaction patterns, and developed
a manual evaluation protocol for each bucket of apps (refer
to Appendix C for details). Four graduate students, including
three not involved in this paper, collectively evaluated all
149 apps. Each app was examined by all four students, with
5–6 minutes spent per app per evaluator. Manual evaluation
confirmed that all SensorBomb-infected apps installed and
ran normally without any observable issues.

VIII. SENSORBOMB AGAINST DETECTORS

A. Static Analysis

Evaluation Tools. To our best knowledge, there are three static
analysis detectors for Android logic bombs: TriggerScope [7],
HSOMiner [8], and Difuzer [9]. HSOMiner did not release its
code. TriggerScope [59] cannot detect SensorBomb because
it is limited to a predefined set of trigger conditions (time,
location, and SMS). We extended TriggerScope to additional
sensor-based triggers and noticed markedly high false-positive
rates, which is consistent with the observations in [60]. There-
fore, we used Difuzer in our evaluation.
Results. We evaluated 8 common sensitive operations across
3 prototypes. We use SensorBomb to select operations to
embed. Each infected app was analyzed with Difuzer for HSO.
As shown in Table VII, every HSO chosen by SensorBomb
successfully evaded Difuzer. The Accelerometer Bomb by-
passed all 8 checks. The User Bomb’s motion-based trigger
is unsuitable for 3 operations, and the Camera Bomb is
unsuitable for 2. These results demonstrate that naively using
sensor data as triggers does not guarantee full evasion or
detection: outcomes depend on both app context and HSO
type, whereas SensorBomb consistently identifies and embeds
only those operations that evade static analysis.

Next, we attempt to inject multiple HSOs into the host app.
Results show that: (1) when 2 HSOs were injected, Difuzer
cannot identify any malicious behaviors; (2) the User Bomb
and Camera Bomb become detectable when 3 operations were
injected; and (3) the Accelerometer Bomb is detected when
4 HSOs were injected. This suggests that triggering multiple
sensitive behaviors substantially increases the risk of detection.

12

Fig. 10: Anomaly detection rate against (A) Accelerometer
bomb and traditional accelerometer-based logic bomb in stable
scenarios, and (B) the traditional accelerometer-based logic
bomb in moving scenarios.

B. Anomaly Detection

Evaluation Tools. Both 6thSense [21] and SBTDDL [22] re-
port effective detection of sensor-based logic bombs. However,
neither of them was open-sourced. Hence, we followed their
designs to collect data and train detectors from scratch.
Data Collection. We followed the protocol in SBTDDL [22]
for data collection: 31 activity sessions of 5 minutes each;
continuous sensors sampled at 1 Hz and state-change sensors
sampled at 5 Hz. We recruited five volunteers and collected
9,300 minutes of sensor data across four smartphones. While
neither 6thSense or SBTDDL specified whether vibration
artifacts were used, we still incorporated them into our dataset.
The predefined vibration patterns employed in our experiments
are listed in Table X in Appendix D.
Results. We ran 100 trials for each SensorBomb variant, and
in every case, the detector classified the actuator behavior
as benign. The sensor status related to Camera Bomb is
whether the camera is on or off, and the varied screen-color
patterns have no effect on that state; consequently, the Camera
Bomb never triggers the anomaly detection. The User Bomb’s
activation simply replicates legitimate user interactions, which
are inherently labeled as benign. Consequently, we concentrate
on the Accelerometer bomb. Following 6thSense [21], we
collect 1 second of accelerometer data and compute the
state change according to §V-C. Thanks to the wide variety
of predefined vibration patterns, when converted to binary
according to SensorBomb’s parameters, predefined vibration
patterns exhibit a wide range of “1” proportions: from the
minimal single-bit pulses of a 2 ms “tick” or 6 ms “click” up to
sustained bursts of 300, 500, or even 1000 ms (i.e., sequences
of l consecutive “1” bits). In our experiments, although random
trigger patterns produced varying densities of “1” bits, none
were detected as anomalies by the sensor-anomaly detector, as
shown in Figure 10(A).

In contrast, logic bombs relying on external emitters cannot
manipulate the full sensor context. For example, legitimate
vibrations typically coincide with changes in screen-on state,
so even if an external device replays a legitimate vibration
pattern, the mismatch with other sensors exposes the attack
and yields 100% detection in stable conditions (Figure 10 (A)).
Although an external emitter can also mimic the accelerometer
signature of a locked phone in motion to evade anomaly
detection during vigorous movement, replaying these patterns

TABLE VIII: Theoretical fuzzing time for different Bombs.

SensorBomb nθ nf l (bits) ∆t (s) Tmax

Acc bomb fixed fixed 13–16 0.02–0.06 104.2 hours
Cam bomb 2 20 3, 5, 10 1 115.8 hours
User bomb fixed fixed 16 0.5 145.6 hours

Sensor value range scale sampling rate Tmax

Ambient light [61] 0–188,000 lux 0.045 lux 50 Hz 2.32 hours
Step count [18] 0–20,000 steps 1 step 3 steps / s 1.85 hours

when the device is stationary creates inconsistencies with
other sensor readings (e.g., the gyroscope) and is flagged as
malicious. Furthermore, executing the attack while the phone
is in motion may sometimes bypass anomaly detectors as
shown in Figure 10(B). However, as shown in §VII-B, the
TPR declines sharply, rendering the attack impractical.

Moreover, anomaly detection cannot rely on pattern-based
heuristics, since attackers are free to craft arbitrary vibration
sequences. As a result, it is impossible to assemble a compre-
hensive dataset that clearly separates benign from malicious
patterns. Even a coarse classifier would be vulnerable to
denial-of-service attacks, whereby an adversary floods the
detector with custom vibration sequences to overwhelm it.

C. Sensor Data Fuzzing Evasion

Methodology. While no off-the-shelf tool exists to directly
measure the fuzzing time of sensor-based logic bombs, the
principles in [25], [11] can be used to fuzz sensor data.
Meanwhile, pure black-box fuzzing over all possible sensor
readings is computationally impractical [20]. Therefore, we
assume gray-box fuzzing: the defender knows the number
of thresholds (nθ) and their approximate values, e.g., if a
0.06m2/s threshold is used to binarize accelerometer readings,
the defender fuzzes around it with values such as 0.04, 0.07.

The SensorBomb derives its trigger from a dynamically
generated bitstring (trigger pattern) extracted from the sen-
sor stream. As these patterns appear to be pseudorandom,
heuristics-guided data generation becomes ineffective. We
adopt a data-sweeping strategy to cover the full parame-
ter space defined by frequency f , time window width ∆t,
threshold θ, and trigger pattern length l. In theory, the time
required to exhaustively cover this sensor-stream space is
T = nθ · nf ·

∑lmax

l=lmin

∑i
k=1 2

l · L∆tk. Meanwhile, if we
adopt the same data-sweeping strategy to fuzz existing logic
bombs that trigger on a single sensor value, the required time
is T = R

sfs
, where R is the sensor’s value range, s is the

scaling granularity, and fs is the sampling rate fs.
Theoretical Estimation. Table VIII shows the theoretical
maximum fuzzing time Tmax for the SensorBombs and 2
sensor-value-based logic bombs, assuming that the dynamic
triggers are not updated during fuzzing, i.e., the trigger updat-
ing cycle tx is larger than Tmax. The maximum fuzzing time
for the two sensor-value bombs are approximately 2 hours,
while that of SensorBomb variants all exceed 100 hours.
Experimental Results. For single–sensor-value logic bombs,
we randomly selected a sensor as the trigger, fuzzed it with
non-repeating random values within its valid range, recorded

13

Fig. 11: Smaller ratio of tx and Tmax increase fuzzing time

the number of iterations required to hit the trigger, and
multiplied this by 1/fs to estimate the actual fuzzing time with
real hardware sensors. With 10,000 experiments, we found that
the average fuzzing time to trigger the logic bomb is about half
of the theoretical maximum. For SensorBomb, we fuzz the
app by repeatedly feeding it with non-repeating random sensor
readings. When tx≥Tmax, the average fuzzing time to trigger
the SensorBomb is about half of the theoretical maximum
shown in Table VIII. Meanwhile, when tx=0.1×Tmax, about
half of the bombs were never triggered at the end of the fuzz
(all valid sensor readings are covered). This is caused by the
dynamic triggers: if the trigger switches to patterns that have
already been fuzzed, the fuzzing process may never reach the
new pattern within a single fuzzing pass.

To further examine the impact of dynamic triggers in
fuzzing, we first accelerate the process by injecting binarized
trigger patterns into the infected app at a higher frequency,
instead of feeding real sensor readings at the regular hardware
sampling rate. We then swept tx from 0.1Tmax to 1.2Tmax in
steps of 0.1Tmax, and repeated the fuzzing process for each tx
for multiple passes until the trigger is eventually activated. We
repeat the experiment for 10,000 trials. As shown in Figure 11,
when tx/Tmax ≥ 1, the fuzzer, on average, activates the trigger
after testing half of the patterns, i.e., the average fuzzing
time stabilizes at Tmax/2. However, when tx/Tmax < 1,
the average fuzzing time increases, and some triggers are
not activated in the first fuzzing pass. As tx decreases, an
increasing fraction of triggers requires multiple fuzzing passes.
When tx/Tmax = 0.1, the average fuzzing time reached Tmax,
effectively doubling the expected fuzzing time.

IX. POTENTIAL DEFENSE

From the evasion analysis, we can observe that static
analysis is unlikely to detect SensorBomb, since the guarded
code uses only common language features, operations, and
APIs that are well adopted by benign apps.

A potential defense is to construct a whitelist to allow
only actuator patterns found in legitimate apps. In an initial
exploration, we examined app-embedded vibration behaviors
using static analysis on 2,000 APKs. 1,396 apps invoked
vibrations, and 98% adopted patterns consistent with Table X.
Hence, there is potential to derive and enforce a whitelist of
commonly used patterns. If the attacker wants to adapt to an
OS-level filter/firewall of vibration patterns, they could only
use common, whitelisted patterns as the trigger. Consequently,

the zero-FPR guarantee is likely sacrificed, and fuzzing (as the
number of whitelisted patterns is limited) may be employed
to detect the trigger. However, this defense suffers from the
potential false-blocking of benign vibration patterns, while
the attacker may still combine multiple benign patterns as a
trigger. Meanwhile, it is challenging to establish pattern-based
whitelists for screen-based actuators, due to the variability
and semantic flexibility of multimedia content. AE/AWB may
offset brightness changes and compensate for low lights;
hence, they have the potential to be employed in SensorBomb
defense. However, designing effective and robust defenses that
do not interfere with normal app usage still requires extensive
research, which we leave for future work.

X. CONCLUSION

In this paper, we proposed SensorBomb , a practical and
stealthy Android logic bomb. Our approach enables logic
bombs to bypass all existing detection techniques and targeted
updates, achieving a high TPR with 0% FTR. The efficacy and
feasibility of SensorBomb are validated through 3 prototypes
built on an easy-to-implement framework. In addition, large-
scale injection experiments demonstrate that SensorBomb
can be injected into existing applications without impacting
their normal functionality. Finally, we argue that Sensor-
Bomb can be extended to other platforms, potentially giving
rise to multiple variants, underscoring the need for proactive
defenses to mitigate potential real-world risks.

ACKNOWLEDGMENT
Ye Wang, Bo Luo, and Fengjun Li were supported in part by

NSF IIS-2014552, DGE-1565570, and the Ripple University
Blockchain Research Initiative. The authors would like to
thank the anonymous reviewers and the shepherd for their
valuable comments and suggestions, and the volunteers in the
user study.

REFERENCES

[1] U.S. Attorney’s Office, Eastern District of North Carolina, “Georgia man
sentenced for compromising u.s. army computer program,” Sep. 2018,
accessed: 2024-01-12.

[2] D. Kushner, “The real story of stuxnet,” IEEE Spectrum, vol. 53, no. 3,
p. 48, 2013.

[3] D. Fiser, “Attacking the supply chain: Devel-
oper,” https://www.trendmicro.com/en_us/research/23/a/
attacking-the-supply-chain-developer.html, Jan. 2023, trend Micro
Research.

[4] National Association of Broadcasters, “Analysis of the south korean mal-
ware attack,” https://www.nab.org/xert/scitech/pdfs/20130328_South%
20Korean%20Malware.pdf, National Association of Broadcasters, Tech.
Rep., 2013, accessed: 2024-01.

[5] Y. Yao, L. Zhu, and H. Wang, “Real-time detection of passive backdoor
behaviors on android system,” in 2018 IEEE Conference on Communi-
cations and Network Security (CNS), 2018, pp. 1–9.

[6] A. Afianian, S. Niksefat, B. Sadeghiyan, and D. Baptiste, “Malware dy-
namic analysis evasion techniques: A survey,” ACM Computing Surveys
(CSUR), vol. 52, no. 6, pp. 1–28, 2019.

[7] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna, “Triggerscope: Towards detecting logic bombs in android
applications,” in 2016 IEEE symposium on security and privacy (SP).
IEEE, 2016, pp. 377–396.

[8] X. Pan, X. Wang, Y. Duan, X. Wang, and H. Yin, “Dark hazard:
Learning-based, large-scale discovery of hidden sensitive operations in
android apps.” in NDSS, 2017.

14

[9] J. Samhi, L. Li, T. F. Bissyandé, and J. Klein, “Difuzer: Uncovering
suspicious hidden sensitive operations in android apps,” in International
Conference on Software Engineering, 2022.

[10] Q. Zhao, C. Zuo, B. Dolan-Gavitt, G. Pellegrino, and Z. Lin, “Automatic
uncovering of hidden behaviors from input validation in mobile apps,”
in 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020.

[11] M. Y. Wong and D. Lie, “Intellidroid: a targeted input generator for the
dynamic analysis of android malware.” in NDSS, 2016.

[12] D. Kirat, G. Vigna, and C. Kruegel, “{BareCloud}: Bare-metal analysis-
based evasive malware detection,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 287–301.

[13] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin,
“Automatically identifying trigger-based behavior in malware,” Botnet
Detection: Countering the Largest Security Threat, pp. 65–88, 2008.

[14] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, 2013, pp. 224–234.

[15] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “Droidfuzzer: Fuzzing the
android apps with intent-filter tag,” in Proceedings of International
Conference on Advances in Mobile Computing & Multimedia, 2013.

[16] M. Alecci, J. Samhi, L. Li, T. F. Bissyandé, and J. Klein, “Improving
logic bomb identification in android apps via context-aware anomaly
detection,” IEEE Trans. on Dependable and Secure Computing, 2024.

[17] J. Samhi, T. F. Bissyandé, and J. Klein, “Triggerzoo: a dataset of android
applications automatically infected with logic bombs,” in International
Conference on Mining Software Repositories, 2022.

[18] ThreatFabric, “Cerberus - a new banking trojan from the un-
derworld,” https://www.threatfabric.com/blogs/cerberus-a-new-banking-
trojan-from-the-underworld, Aug 2019.

[19] A. Martinez, “Android malware that triggers only
when it detects motion,” https://thethreatreport.com/
android-malware-that-triggers-only-when-it-detects-motion/, Feb.
2019, accessed: 2025-07-20.

[20] R. Hasan, N. Saxena, T. Haleviz, S. Zawoad, and D. Rinehart, “Sensing-
enabled channels for hard-to-detect command and control of mobile
devices,” in Proceedings of the 8th ACM SIGSAC symposium on Infor-
mation, computer and communications security, 2013, pp. 469–480.

[21] A. K. Sikder, H. Aksu, and A. S. Uluagac, “{6thSense}: A context-
aware sensor-based attack detector for smart devices,” in 26th USENIX
Security Symposium, 2017, pp. 397–414.

[22] S. Manimaran, V. Sastry, and N. Gopalan, “Sbtddl: A novel framework
for sensor-based threats detection on android smartphones using deep
learning,” Computers & Security, vol. 118, p. 102729, 2022.

[23] X. Wang, S. Zhu, D. Zhou, and Y. Yang, “Droid-antirm: Taming control
flow anti-analysis to support automated dynamic analysis of android
malware,” in ACSAC, 2017.

[24] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Harvesting run-
time values in android applications that feature anti-analysis techniques.”
in NDSS, 2016.

[25] S. Rasthofer, S. Arzt, S. Triller, and M. Pradel, “Making malory behave
maliciously: Targeted fuzzing of android execution environments,” in
International Conference on Software Engineering (ICSE), 2017.

[26] E. B. Yi, A. Maji, and S. Bagchi, “How reliable is my wearable: A
fuzz testing-based study,” in IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2018.

[27] C.-J. M. Liang, N. D. Lane, N. Brouwers, L. Zhang, B. F. Karlsson,
H. Liu, Y. Liu, J. Tang, X. Shan, R. Chandra et al., “Caiipa: Automated
large-scale mobile app testing through contextual fuzzing,” in Annual
international conference on Mobile computing and networking, 2014.

[28] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing the
android permission specification,” in ACM conference on Computer and
communications security, 2012.

[29] T. Vidas and N. Christin, “Evading android runtime analysis via sandbox
detection,” in Proceedings of the 9th ACM symposium on Information,
computer and communications security, 2014, pp. 447–458.

[30] L. Guan, S. Jia, B. Chen, F. Zhang, B. Luo, J. Lin, P. Liu, X. Xing,
and L. Xia, “Supporting transparent snapshot for bare-metal malware
analysis on mobile devices,” in Annual computer security applications
conference (ACSAC), 2017.

[31] W. Li, L. Guan, J. Lin, J. Shi, and F. Li, “From library portability to para-
rehosting: Natively executing microcontroller software on commodity
hardware,” in Network and Distributed System Security Symposium,
NDSS, 2021.

[32] W. Li, J. Shi, F. Li, J. Lin, W. Wang, and L. Guan, “µafl: non-intrusive
feedback-driven fuzzing for microcontroller firmware,” in Proceedings
of the 44th International Conference on Software Engineering, 2022,
pp. 1–12.

[33] A. K. Sikder, G. Petracca, H. Aksu, T. Jaeger, and A. S. Uluagac,
“A survey on sensor-based threats and attacks to smart devices and
applications,” IEEE Communications Surveys & Tutorials, vol. 23, no. 2,
pp. 1125–1159, 2021.

[34] A. K. Sikder, H. Aksu, and A. S. Uluagac, “A context-aware framework
for detecting sensor-based threats on smart devices,” IEEE Transactions
on Mobile Computing, vol. 19, no. 2, pp. 245–261, 2019.

[35] P. Hu, H. Zhuang, P. S. Santhalingam, R. Spolaor, P. Pathak, G. Zhang,
and X. Cheng, “Accear: Accelerometer acoustic eavesdropping with
unconstrained vocabulary,” in IEEE S&P, 2022.

[36] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T.
Campbell, “A survey of mobile phone sensing,” IEEE Communications
magazine, vol. 48, no. 9, pp. 140–150, 2010.

[37] G. Grouios, E. Ziagkas, A. Loukovitis, K. Chatzinikolaou, and
E. Koidou, “Accelerometers in our pocket: Does smartphone accelerom-
eter technology provide accurate data?” Sensors, vol. 23, no. 1, 2022.

[38] Google Play Help, “Data safety section in google play - google
play console help,” 2024, accessed: 2024-10-26. [Online]. Avail-
able: https://support.google.com/googleplay/android-developer/answer/
9859673?hl=en#zippy=

[39] JoMingyu, “google-play-scraper: Python api to crawl google play
store data,” Jun. 2024, mIT License. [Online]. Available: https:
//pypi.org/project/google-play-scraper/

[40] MDN Web Docs, “Navigator - web apis | mdn,” 2024, accessed:
2024-11-03. [Online]. Available: https://developer.mozilla.org/en-US/
docs/Web/API/Navigator

[41] MDN Contributors, “Navigator: vibrate() method - web apis,” 2023,
accessed: 2023-12-16. [Online]. Available: https://developer.mozilla.
org/en-US/docs/Web/API/Navigator/vibrate

[42] B. Carrara and C. Adams, “Out-of-band covert channels—a survey,”
ACM Computing Surveys (CSUR), vol. 49, no. 2, pp. 1–36, 2016.

[43] Android Developers, “Background work restrictions,” https:
//developer.android.com/develop/background-work/background-tasks/
bg-work-restrictions, 2024, accessed: 2024-11-03.

[44] A. Al-Haiqi, M. Ismail, and R. Nordin, “A new sensors-based covert
channel on android,” The Scientific World Journal, vol. 2014, no. 1, p.
969628, 2014.

[45] C. Bolton, Y. Long, J. Han, J. Hester, and K. Fu, “Characterizing
and mitigating touchtone eavesdropping in smartphone motion sensors,”
in Proceedings of the 26th International Symposium on Research in
Attacks, Intrusions and Defenses, 2023, pp. 164–178.

[46] Androguard Project, “Androguard: Reverse engineering and analysis
of android applications,” https://androguard.readthedocs.io/, accessed:
2025-11-20.

[47] P. Lam, O. Lhoták, L. Hendren et al., “The soot framework for java
program analysis: A retrospective,” in CETUS Users and Compiler
Infastructure Workshop, 2011.

[48] T. W. Ridler, S. Calvard et al., “Picture thresholding using an iterative
selection method,” IEEE Trans. Syst. Man Cybern, vol. 8, no. 8, pp.
630–632, 1978.

[49] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in 2012 IEEE Symposium on Security and Privacy.
IEEE, 2012, pp. 95–109.

[50] E. M. Rudd, A. Rozsa, M. Günther, and T. E. Boult, “A survey of stealth
malware attacks, mitigation measures, and steps toward autonomous
open world solutions,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 2, pp. 1145–1172, 2016.

[51] N. Sikder and A.-A. Nahid, “Ku-har: An open dataset for heterogeneous
human activity recognition,” Pattern Recognition Letters, vol. 146, pp.
46–54, 2021.

[52] T. Althoff, R. Sosič, J. L. Hicks, A. C. King, S. L. Delp, and J. Leskovec,
“Large-scale physical activity data reveal worldwide activity inequality,”
Nature, vol. 547, no. 7663, pp. 336–339, 2017.

[53] I. Hwang, J. Cho, and S. Oh, “Vibecomm: Radio-free wireless commu-
nication for smart devices using vibration,” Sensors, vol. 14, no. 11, pp.
21 151–21 173, 2014.

[54] N. TECH, “What you need to know about smartphone screen
brightness — and why incredible peak brightness is mostly marketing,”
NEWS.am TECH - Innovations and science, Nov 2025, accessed:
2025-11-13. [Online]. Available: https://tech.news.am/eng/news/6322/

15

what-you-need-to-know-about-smartphone-screen-brightness-%E2%
80%94-and-why-incredible-peak-brightness-is-mostly-marketing.html

[55] Android Developers, “CameraX Overview,” https://developer.android.
com/media/camera/camerax, 2023, accessed: 2024-01-06.

[56] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo: Collect-
ing millions of android apps for the research community,” in IEEE/ACM
Working Conference on Mining Software Repositories (MSR), 2016.

[57] J. Samhi, “AndroBomb (1.0),” 2022. [Online]. Available: https:
//doi.org/10.5281/zenodo.5907924

[58] Google, “Android debug bridge (adb),” 2025. [Online]. Available:
https://developer.android.com/tools/adb

[59] JordanSamhi, “Tsopen,” https://github.com/JordanSamhi/TSOpen, 2021,
accessed: 2023-12-12.

[60] J. Samhi and A. Bartel, “On the (in) effectiveness of static logic bomb
detection for android apps,” IEEE Transactions on Dependable and
Secure Computing, vol. 19, no. 6, 2021.

[61] Analog Devices, MAX44009: Ambient Light Sensor Data Sheet, Analog
Devices, Norwood, MA, Aug 2013, accessed: 2025-04-12. [Online].
Available: https://www.analog.com/media/en/technical-documentation/
data-sheets/MAX44009.pdf

APPENDIX

A. Knowledge Base of Sensitive Operations Driven by Sensors

Sensor-driven sensitive operations are numerous and di-
verse. We list a representative subset in Table IX, focusing
on operations commonly used with accelerometers, cameras,
and motion sensors in gaming applications.

B. Code Snippet of Accelerometer Bomb

Please refer to Code Snippet 1 for the injected Sensor-
Bomb source code in Java. Its size is negligible relative to
the codebase of a typical Android app, which usually contains
10–20 lines of code.

C. Manual Testing Protocol

Since AndroZoo does not provide metadata on app cate-
gories, we retrieved the official app category information by
querying the Google Play Store using the google_play_scraper
library, based on each app’s package name. For apps not found
on Google Play, we manually assigned categories by exploring
their functions. We have designed the following app buckets
and the manual evaluation protocol for each bucket.
Games

• Example Categories: Arcade, Puzzle, Action, Casual
• Primary Interaction Pattern: Continuous gameplay loop
• Manual Evaluation: Play each game for 10–12 minutes; test

start/stop, pause/resume, settings; observe stability, ads/IAP
behavior, and UI consistency.

Health & Fitness
• Example Categories: Fitness, Step Counter, Sleep, Heart Rate
• Primary Interaction Pattern: Sensor-based measurement; ac-

tivity logging
• Manual Evaluation: Complete onboarding process; run ≥3

measurement sessions; perform physical activities; confirm met-
rics update and history logs.

Content Creation & Editing
• Example Categories: Camera, Audio Recorder, Drawing, Doc

Editors
• Primary Interaction Pattern: Create, edit, save artifact
• Manual Evaluation: Create a document; apply multiple edits;

save/export; reopen to verify persistence; test one share/export
path; repeat editing.

Content Consumption

• Example Categories: News, Video, Music, Books
• Primary Interaction Pattern: Feed browsing; media playback
• Manual Evaluation: Load the main feed; open ≥3 items; scrol-

l/navigate; play ≥3 minutes of media; test pause/seek/search.
Communication & Social

• Example Categories: Chat, Email, Forums, Social Media
• Primary Interaction Pattern: Messaging, posting, comment-

ing, etc.
• Manual Evaluation: Create and sign in dummy account; send

multiple messages/posts; confirm delivery; test reply/attach/re-
fresh; delete dummy posts.

Shopping
• Example Categories: Shopping, Finance
• Primary Interaction Pattern: Browse, search, product details,

cart, checkout
• Manual Evaluation: Browse catalog; open details; add to cart;

proceed to final payment (no actual purchase); check navigation
and loading.

Utilities & Device Control
• Example Categories: File Manager, Cleaner, Launcher, Smart-

Home
• Primary Interaction Pattern: Execute a primary device control

function
• Manual Evaluation: Run main utility action; verify visible

output or logs; reopen app to confirm persistent state.
Education

• Example Categories: Language Learning, Kids Learning, Dic-
tionary

• Primary Interaction Pattern: Lesson/lookup loop
• Manual Evaluation: Start lesson or lookup; complete a short

unit; verify feedback/progress; test search or next-step naviga-
tion.

Maps, Travel, & Local Services
• Example Categories: Navigation, Travel, Local Business
• Primary Interaction Pattern: Location-based search and rout-

ing
• Manual Evaluation: Allow location access; browse/search

POI; open details; start route preview or booking flow; confirm
stable map loading.

Hybrid, Other
• Example Categories: Multi-functional or ambiguous apps
• Primary Interaction Pattern: Two or more primary functions

with different flows
• Manual Evaluation: Identify ≥2 flows; complete both within

12–15 minutes; evaluate navigation, stability, and sensor/per-
mission behavior.

D. Knowledge Base of Vibration Usage

Table X presents the vibration-usage knowledge base that
we constructed across Android app categories. The upper
section summarizes common vibration trigger conditions,
mechanisms, and semantic intents observed across different
categories of apps, while the lower section lists the pat-
terns of common, predefined vibration sequences. In Android,
vibration patterns are defined as alternating delay–vibration
durations, where the first element specifies the initial delay.
Accordingly, these patterns typically begin with 0 to indicate
immediate activation.

16

TABLE IX: Legitimate sensor-involved sensitive operations and required permissions

Legitimate Use Context Sensitive Operation Triggered Required Android Permissions App Category

(1) Accelerometer

Shake-to-report/shake-to-share Upload logs/feedback to servers INTERNET,
ACCESS_NETWORK_STATE

Support tools, social apps

Fitness and step tracking Write health/activity data; may use coarse location ACTIVITY_RECOGNITION,
ACCESS_COARSE_LOCATION

Fitness, healthcare

Shake-to-call emergency or
safety workflow

Read contacts, call phone numbers, send SMS READ_CONTACTS, CALL_PHONE,
SEND_SMS

Personal safety apps

Photo/video stabilization Conditional photo/video capture CAMERA,
WRITE_EXTERNAL_STORAGE

Camera apps, social media

Compass/heading for navigation Location-based route adjustment ACCESS_FINE_LOCATION,
ACCESS_COARSE_LOCATION

Navigation, maps

Driving-state detection Auto-reply SMS, mute notifications, driving mode UI READ_SMS, SEND_SMS,
ACCESS_FINE_LOCATION

Messaging, system utilities

Shake-to-Shazam Start audio fingerprinting on motion event RECORD_AUDIO, INTERNET Music recognition
Motion-dependent proximity un-
lock

Bluetooth proximity check when the device is lifted BLUETOOTH, BLUETOOTH_ADMIN Smart lock, car unlock

(2) Camera

Barcode/QR scanning Initiate payments, tickets, or login transactions CAMERA, INTERNET Retail, banking, ticketing
Document/receipt Save PDFs/photos; cloud sync CAMERA, INTERNET Productivity, office
Selfie capture/profile customiza-
tion

Capture photo; access gallery; upload content CAMERA, READ_MEDIA_IMAGES,
INTERNET

Social media, messaging

Auto flash/torch control Enable LED/torch during scanning or capture CAMERA, FLASHLIGHT Camera, flashlight apps
AR object placement Download AR assets/models CAMERA, INTERNET AR utilities, AR games
Business-card scanning Access contacts to save scanned info CAMERA, READ_CONTACTS,

WRITE_CONTACTS
Productivity, office apps

Photo geotagging (EXIF) Embed GPS location into captured photos ACCESS_FINE_LOCATION Camera, gallery
Video recording with audio Enable the microphone during video capture CAMERA, RECORD_AUDIO Camera apps, social media

(3) Motion Sensor Games

Motion-triggered selfie avatar Capture face image for avatar creation CAMERA Casual motion games
Motion + voice combos (shake +
shout)

Enable the microphone for voice inputs RECORD_AUDIO Rhythm/party games

Shake/tilt to connect to con-
trollers/wearables

Bluetooth scanning, pairing BLUETOOTH, BLUETOOTH_ADMIN Wearable-integrated games

Motion-based event unlocking Download in-game assets from the server INTERNET,
ACCESS_NETWORK_STATE

RPGs, puzzle games

Code Snippet 1. The injected SensorBomb source code in Java

1 final int L = 16, MASK = (1 << L) - 1; int sig = 0;
2 final Set<Integer> excluded = new CopyOnWriteArraySet<>();
3 final GenTriggerPattern gen = new GenTriggerPattern(L, new byte[]{1,2,3,4,5,6,7,8,9,10}, excluded);
4 final BitStreamFilter filt = new BitStreamFilter(80.0, 5.0, 0.06, 0.3);
5

6 final HttpsURLConnection conn = (HttpsURLConnection) new URL("https://example.com/api").openConnection();
7

8 public void onSensorChanged(SensorEvent e){ double ax = e.values[0], ay = e.values[1], az = e.values[2];
9 int bit = filt.nextBit(ax, ay, az); sig = ((sig << 1) | bit) & MASK;

10 if (sig == gen.next()) HSO();
11 else { excluded.add(sig); if (sig == 0) sendTimingOverHttps(conn, excluded); }

}
12

13 static class GenTriggerPattern{ final Hotp hotp; final int MASK; final Set<Integer> excl;
14 GenTriggerPattern(int L, byte[] key, Set<Integer> excl){ this.hotp = new Hotp(key); this.MASK = (1 <<

L) - 1; this.excl = excl; }
15 int next(){ int p; do { p = hotp.next() & MASK; } while (excl.contains(p));
16 return p; } }

17

TABLE X: Knowledge base of vibration usage across Android app categories and common pre-defined vibration patterns

Category Trigger Condition Source / Mechanism Vibration Pattern Semantic Intent

Fitness & Tracking

Goal achieved (steps, distance) Background metric threshold Short celebratory multi-pulse Positive reinforcement
Lap / segment completed Distance/time threshold event Single medium pulse Progress milestone feedback
Start / pause / resume / stop Foreground UI action Short pulse / dual-tap (pause) Mode transition acknowledgment
HR zone / arrhythmia alert HR sensor + rule evaluation Repeated short pulses Physiological safety warning
Inactivity reminder Step counter + periodic timer Soft gentle pulses Behavioral nudging

Messaging & Social

New DM / mention High-importance notification Short multi-pulse Attention signal
Reply / reaction event Notification callback Single or dual tap Personal relevance cue
Incoming call VoIP call manager Long repeating buzzes Urgent attention request
Message sent / failed Send-completion callback Tiny tap / double-tap Action result confirmation

Productivity / Calendar

Email / task arrival Sync-based notification Medium short pulse Informational update
Meeting / task reminder AlarmManager / WorkManager Short patterned pulses Time-sensitive reminder
Pomodoro / countdown end Timer callback Brief celebratory pulse Completion signal
Overdue escalation Rule-evaluation engine Repeating short pulses High-urgency escalation

Finance & Banking

Payment / transfer success Network confirmation push Single or dual short pulse Critical action confirmation
NFC tap / card present NFC event callback Micro-tap Contactless acknowledgement
Fraud / suspicious access alert High-priority push Repeated long pulses Security warning
Price threshold triggered Background watcher Short patterned pulses Trading/market alert

Shopping / Rides
Order status updates Server push event Medium pulse / short pattern Order progress update
Driver near / arrival Location callback Short repeated pulses Immediate action prompt
Promotion / flash sale Marketing notification Single pulse Attention acquisition

Navigation
Turn-by-turn cue Nav engine decision Short directional pulse Driving guidance
Speed / hazard alert Geo-fence / rule detection Repetitive short pulses Road safety alert
GPS loss / rerouting Navigation callback Medium pulse Navigation state change

Games

Collision / damage Physics or damage engine Short impact-like pulses Immersive haptic feedback
Weapon / skill use Action / skill handler Micro fast taps Action confirmation
Low HP / death state HP threshold logic Repeating pulses / long buzz Critical survival warning
Level-up / rare reward Reward event engine Fast triple pulse Motivation reinforcement

System / Accessibility
Alarm / timer AlarmManager / full-screen intent Long repeating pulses High-priority alert
Keyboard / UI haptics IME / gesture listener Micro-taps Interaction tactile feedback
Screen-reader navigation Accessibility callback Confirm vs. error patterns Assistive non-visual feedback

(A) Short / Instant Patterns (B) Long-term / Rhythmic Patterns

Category Name Patterns Category Name Patterns

Oneshot

short 0, 100, 200

Long-term

Heartbeat 0, 200, 500, 200
long 0, 200, 100 long lasting 0, 1000, 500, 1000
TickTock 0, 200, 100 short lasting 0, 200
click 0, 6, 100 SOS Morse code*
double click 0, 144, 100 Rapid 0, 100, 50
heavy click 0, 8, 100 Symphony 0, 400, 100, 300, 100, 200
tick 0, 2, 100 Staccato 0, 100, 50

Continuous

short repeat 0, 200 Waltz 0, 100, 300
long repeat 0, 1000, 500, 1000 Zig Zig 0, 100, 200
SOS repeat 5× SOS Off beat 0, 300, 100, 200, 100, 400
Siren repeat 5× Siren Siren 0, 500, 250

Customized
13 bits generated Ripple 0, 200, 100, 150, 50, 100
12 bits generated Telephone 0, 400, 200, 400, 1000

* Morse code for SOS is {0, 200, 100, 200, 100, 200, 300, 500, 300, 500, 300, 500, 300, 200, 100, 200, 100, 200}.

18

